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CYLINDRICAL SHELLS SUBJECT TO UNIFORM BENDING
MOMENT AROUND AN ELLIPTIC HOLE

M. N. BAPU RAO,t T. ARIMAN and L. H. N. LEE

Department of Aerospace and Mechanical Engineering. University of Notre Dame. Notre Dame. Indiana

Ablltrac:t-A theoretical analysis is presented for the membrane and bending stresses around an elliptic bole in
an infinitely long. thin circular cylindrical sbeU. The major axis of the elliptic hole is taken to be perpendicular
to shell axis. The shell is loaded by a uniformly distributed bending moment around the elliptic cutout. The
method of solution involves perturbation in a curvature parameter. The results obtained are valid if the hole is
small in size compared to the radius of the cylindrical shell. Expressions for the stresses at the tip of a circum
ferential and axial crack are also presented.

NOTATION

la.2b
ce.(1/. q), se.(". q)

D

E
F
2h
H~II(IlI)' H~I~I'~)

JJllt), J .(1'2)
K

M

m

W
x..r
'J.,p

(J

I

;,

lengths of major and minor axes. respectively
periodic Mathieu functions of cosine type and sine type, respectively

d,·fti II E~ben mg sll ness of she wall, 2
12(I-v )

Young's modulus
complex strcss-<1i1pJacement funelion. (W - imCJ)) where i = J=T
distance between the foci
Hankel functions of first kind
Bessel functions of the first kind
scale factor for the elliptic coordinates

K ;; [h2(cosh 2~ -cos 21/)/2]1

uniformly distributed bending moment applied to the edge of the cutout
[12(1 _1'2))1

a constant, Et2

bendiJrg moments in elliptic coordinates

modified Mathieu functions

membrane forces in elliptic coordinates
transverse shear forces in elliptic coordinates
radius and thickness of shell, respectively
polar coordinates with center of the hole as origin, r being nondimensionalized through length
of the semi,major axis, a
displacement normal to the middle surface of the shell, positive radially outwards
rectangular coordinates, nondimensionalized through length of the semi-major axis, a
polar coordinates with end of major axis as origin. p being nondimensionalized through length
of the semi·major axis, a
a dimensionless curvature parameter,

Euler's constant. 0·5772 ...
(a-h)/(a+b)
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stresses in rectangular coordinates
Poisson's ratio
stress function

1. INTRODUCTION

CIRCULAR cylindrical shells having lateral circular or non"'Circular openings, or intersected
by branching shells are of common occurrence in a large number of engineering installa·
tions such as the fuselage of an aircraft, missile casings, boilers, reactors, deep-diving
vehicles, pressure vessels and interstate oil lines. Although in recent years intensive studies
have been made in this field [1-19] the present status of the area is in major deficiency and
a great deal of theoretical and experimental work is still needed to develop methods of
optimum design for unreinforced and reinforced openings.

Recently Murthy [20] obtained, by a power series expansion technique, the solution
for the membrane and bending stresses around an elliptic hole in an infinitely long cylindri
cal shell subjected to axial tension. At present, more complete work still remains to be don€!
regarding holes of various noncircular shapes. An elliptic hole is an important one because
although circular holes are used widely in practice, an elliptic hole may have an advantage
over the circular one in that it reduces the stress concentration. In an earlier paper Ariman
and Rao [21] presented analytical solutions for the membrane and bending stresses around
an elliptic hole in a circular cylindrical shell. The major axis of the ellipse was taken to be
parallel to the axis of the cylinder. The shell was loaded by a uniformly distributed bending
moment around the elliptic cutout.

In this paper, solutions are obtained for the stresses around an elliptic hole in a long,
thin, circular cylindrical shell. The major axis of the ellipse is perpendicular to the shell
axis. The shell, is again loaded by a uniformly distributed bending moment around the edge
of the elliptic cutout. Expressions for the stresses at the tip of a circumferential and axial
crack are also presented. The method of solution which is similar to that described in
[20,21] involves a perturbation in a curvature parameter {3 given by

{32 = a2[12(1- v2 )]t/8Rt

where 2a is the length ofmajor axis ofthe ellipse, vrepresents the Poisson's ratio and Rand t
are the radius and the thickness ofthe cylindrical shell, respectively. This quantity fJ which is
treated as a dimensionless curvature parameter defines the size of the hole with respect to
the dimensions of the shell. The hole is taken to be small enough so that {3 « 1. The solutions
are expanded in series in even powers of p and products of In {3 and even powers of p.
These expansions are carried up to terms involving p2 and fJ2 In p, and terms involving {J4
and higher powers of pare neglected in comparison with unity. The solutions obtained in
this paper give both the membrane and bending stresses and are valid for all values of
eccentricity of the elliptic hole.

2. FORMULATION OF THE PROBLEM

For a thin circular cylindrical shell the governing complex partial differential equation
of the Donnell theory is given as
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where

(2.3)

(2.2)

(2.1)F = W-im4>, j = .J=T

(
iJ2 iJ2 )

\72 = iJx2+ iJy2

m = [12(1- v2)]tjEt2 .

Here F is the complex displacement function related to the radial displacement W(x, y)
and the stress function 4> and E is the Young's modulus. W(x, y), displacement normal to
the middle surface of the shell, is assumed to be positive radially outward.

In elliptic coordinates (Fig. 1) we have

11 . h;& .x = - sm .. sm '1,
a

y 1
I

AaB ARE FOCI

ELLIPTIC t
BOUNDARY

e·eo CONSTANT
-~-l

FIG. I. Coordinate system.

and the expressions for stress resultants, stress couples and the transverse shears in terms
of F in a general orthogonal curvilinear coordinate system can be written as

1 [ iJ24> 11
2

04> h
2 iJ4>J

N~ = K4 K2"82+2sinh2~iJ'-2sin2tTa'1 • I]

1 [ 2iJ24> h2 . 04> 11
2

. 04>J
N~= K4 K iJ~2-2smh2~iJe+2sm2tTiJI]
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(2.5)

K = [h 2(cosh 2~ - cos 2/'r)/2]t,

Et3

D = 12(1- v2)

and N~, N~, N~~ are membrane forces in elliptic coordinates and M~, M~, M~~; Q~, Q~

represent stress couples and the transverse shears, respectively. The positive directions of
these quantities are shown in (Fig. 2).

MEMBRANE
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Qe
~e / M

W \V e'7
1 \ \ MOMENTS AND

TRANSVERSE
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FIG. 2. Stress resultants.
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(2.6)

The boundary conditions for an infinitely long cylindrical shell having, on its lateral
surface, an elliptic hole subjected to edge loads require that we prescribe N~, N ~'" M ~ and
Qt (Kirchhoff shear) along the edge of the hole e= eo. In addition, at the two ends of the
shell we must prescribe N ~, N ~'" M ~, Q!. In this problem the only load is the uniform edge
moment M, per unit length of the edge of the hole, so that

N~ = 0

N~" = 0

M~ = M at e= ~o

Qt = 0

N~ = N~" = M~ = Qt = 0, at ~ = oot
where

(2.7)

3. THE SOLUTION

The general solution of equation (2.1) appropriate to a residual problem in which the
edge loads along the hole are symmetrically distributed with respect to the x and y axes
can be expressed in a series form [21].

where

IX)

F = L (Cn+iDn)(Vn+iV,J
n=0.1.2••..

(3.1)

V 2j+ iV2j = cosh[(I- i)px]Mew(e, q)ce2J{'1, q)

V 2j+ 1 + iV2j+ 1 = sinh[(I- i)px]NeW+ l(e, q)se2j+ 1('1, q) (3.2)

q = ip2h2/2a 2
, j = 0, 1,2, ....

MeW(~,q), Nej,l]+ l(e, q) are modified Mathieu functions and cc 2J'1,q), Se2j+l('1,q) an~

periodic Mathieu functions of cosine and sine types, respectively. Cn and Dn represent
unknown real constants which must be determined from the first four of the set of boundary
conditions. The conditions at e= 00 are already taken care of with the selection ofMathieu
functions MeW and NeW+ I which tend to zero as ~ approaches infinity.

It is the desired degree ofaccuracy that determines the number ofterms to be considered
in equation (3.1). In order to determine the stresses up to terms involving p2 and p2 1n p,
it is necessary to consider only the first five terms (n = 0 - 4). In expanding the solution,
standard expansions for cen('1, q) and sen('1, q) in powers of q are used [22]. The method of
expansion used for Mew(e, q) and N eW+ I(e, q) is explained briefly in Appendix 1. In the
neighborhood of the hole (~ = eo) Un and Vncan be expanded for n = 0-4 in even powers
of Pand products of In Ii and even powers of p. Due to the lengthiness of these expressions,

t ~ = oc is here to refer 10 points at a large enough distance from the hole that the edge effect is negligible.
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(3.3)

they are not given here. Then it is found necessary to select the unknown coefficients Cn

and Dn also in the form of power series in even powers of {3 and products of In Pand even
powers of p, in the following form :

Co := p2 In {3Ch1)+p20;) + ...

D - D(O)+{32D(2)+
0- 0 0'"

C - C(O) +P2C(2) +
1 - 1 l' ..

D1 := {32 In {3D\1l + {32 D\2) ...

C2 := {32InpC~1)+{320P+···

D2 == D~O)+{32D~2)+ ...

C3 := p4~4)+ .,.

D3 := {32D~2)+ .,.

C - P2C(2)+4 - ... . .•

D... := p4D~4)+ ....

Substituting equation (3.3) and the expressions for Un and v,. into equation (3.1) and
equating real and imaginary parts we obtain the expressions of Wand cJ> as

where

(

C(1) 2 )
W == Wo + +-;Dh2

) p2In p+ W2P2 +0(p4)

D(O)
cJ> == - ~ +cJ>lp2 Inp+cJ>2p2+0(p4)

Wo == Wo[l)CoO), qO), D~O), {, "J
w - w [NO) C(2) D(2) .-.(0) Cm D(2) ;: n}

2 - 2 1J'0, 0' 0, v'l, l' 2' 'o, "

"" - "" [D(O) C(l) Cm .-.(0) DII) .-.(1) ;; n]
""1-""10' 0' 0''-'1., 1''-'2'''''''

"" == cJ> [D(O) 1'"'(2) D!2) .-.(0) D(2) DIOI Cm D(ll .-.(2) r tI]""2 2 0, '"'0' 0 , '-'I., l' 2, 2' 3' '-'4 ''O' " •

(3.4)

(3.5)

(3.6)

As P... 0, the radial displacement W given by equation (3.4) reduces to that ofan infinitely
long plate with an elliptic hole whose boundary is subjected to a uniformly distributed
bending moment. Using the equations (3.4H3.6) and (2.4) the unknown coefficients can
be evaluated from the first four of the boundary conditions given by equation (2.6). For
brevity the expressions of the unknown coefficients are not presented here.

4. RESULTS AND DISCUSSION

The expressions for N .:' Nil' N ':11' M .:' Mil' M.:" and Q.:, Q" can now be obtained by sub
stituting the expressions for Wand cJ> into equation (2.4). It is of particular interest to
consider N", membrane force per unit length and Mil' stress couple per unit length, along
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the boundary of the hole (~ == ~o)

[N] _{ 48Mp2(1+1') }
" ~·~o - tJ[12(l- v2 )] (3 +v)(2 + 1)2(1- 22 cos 2t, + ;.2)

{I/I\"')(P, ..t, v) + "'~"')(P,..t, v) cos 2" + I/I~"')()" v) cos 4,,} (4.1)

[M"h .. ~o = {(3+V)(I_2~OS2q+;.2)2}{t,/I\"l()., v)+t,/I~)(A., v) cos 2"

.1,(b)(2) 4} [{ nO + v)Mp2 }
+'1'3 ,I' COS" + (2+1f(I-2Acos2t,+..t2)2(1-1')(3+v)2

. {1/I~)(2, v) + t,/I~)()., v) cos 2" + t,/I~b)()., v) cos 4,,}] (4.2)

where

t,/I\",) == {Y+ln().+~)J2) }[(3+ v)+4),+(-2- 2v)22 +( - 2+ 2V»).3 +(1- v)24]

+H(3 + v) +!(3 - v»).+i-( - 29- 7v»).2 +i( -1 + v»).3 +!(l- 1'»).4 +i-( -1 + v»).5]

t,/I<r') == {Y+ln(2+~)../2)}[ +( - 3-v)+( -2+2\')/.+0-V);,2]

+[+i<-3- v)+!(11 + 13v»)'+(4- 1'»).2 +!(1- V)A 3 +h( -1 + 1'»).4)

t,/I~"') ;:: [i(-1- v»).+!( -1 + V»).2]

I/I\b) :c [( - 3- 1')+( -7 + 3v»).2 +(1 + 3V».4)

t,/I~) = (8)'-81'i.3]

l/J~) = [-2(1- 1')).2]

t,/Ilfl = [(9+6v+ v2)+(-1 +2v+ v2)).+07 + 18v-3v2)).2+(7 -10v+3v2 »).3

+(-7+ 10v-3v2)A4+(2-4v+2v2)A5 +( -1 +2v- \,2)25
]

l/J~bl = [(3 -2v- v2 )+( - 28 - 20v»).+( -2+4v-2v2 )).2 +( - 2-20v+6v2 );'.3

+( -9+ 141'-5v2)).4+(6- 8v+2v2)).5] (4.3)

l/J<:) = [( - 3 + 2v+ v2»).+(10+8v- 2v2»).2 +(5-6v+ V
2»).3 +( -4+41')A.4].

As P-+ 0, equations (4.1) and (4.2) reduce to the flat plate solutions.
For the case of a circular hole, A. == 0 and" = n/2 - 8 where 8 is the polar coordinate,

(Fig. 1). Equations (4.1) and (4.2) then become

_ 48Mp2(1 +v) f, /
[Ne]'=D - t../[12(1-1'2)][t!+h +In[Ply 2)}

+cos2e{1+(y+ln[p/../2])}] (4.4)

Mp 2n(1 + v)
[Me],=a = -M+(1_v)(3+v)[(3+v)+cos20(-1+v)]. (4.5)
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Here, a, the length of the semi-major axis of the elliptic hole, becomes the radius ot the
circular hole in the limiting case. Equations (4.4) and (4.5) are identical to those obtained in
Ref. [21]. In Figs. 3-5 membrane force N~, perturbation part of the bending moment M~
and the total bending moment M ~ are plotted as functions of the angular coordinate '1 and
the geometrical parameters fJ and A.. The perturbation bending moment is defined as 'the
difference between the bending moment in the shell and the moment given by the cor
responding plate solution.

Figure 3 shows the membrane stress at the hole plotted as a function of ;. and '1 for
fJ = 0·2 and v = 0·3. In this figure the curve obtained by A. = 0, represents the circular
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FIG. 3. Membrane force N. at hole plotted as function of '7 and ). for fJ = 0·2. v '" 0·3.
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FIG. 5. Bending moment M~ at hole plotted as function of" and Afor fJ = 0·2, v = 0·3.

hole case. It is seen that for a larger eccentricity ()., = 0·5), the membrane force N ~ for the
corresponding circular hole case becomes larger than that of an elliptic hole.

In Fig. 4 the variation of the perturbation bending moment M~ at the hole is plotted
as a function of ). and" for f3 = 0·2 and v = 0·3. For the elliptic hole with)" = 0·5, the
perturbation bending moment tends to decrease with increasing values of the angular
coordinate". This is in contrast with the case of the corresponding circular hole. Approxi
mately for" > 17° the perturbation part of the bending moment M ~ of the elliptic hole
becomes smaller than that of the circular hole.

Figure 5 represents the variation of the total bending moment M" at the hole as a func
tion of ). and" for f3 = 0·2 and v = ()'3. It is seen that the eccentricity parameter)., has a
considerable effect on the bending moment M~. This effect becomes more significant par
ticularly for" < 40°.

5. CIRCUMFERENTIAL AND AXIAL CRACKS

(5.1)

As a limiting case of the elliptic hole the circumferential and axial cracks may now be
investigated without any major difficulty. Let p and ex denote dimensionless polar co
ordinates with one qf the ends of the major axis as the origin, Figs. 1 and 6. W and ~

which are known in elliptic coordinates , and " can be expressed in terms of p (p being
nondimensionalized with respect to a) and ex by using the expansions in Appendix 2, and
after the substitution of '0 = 0 for the case ofa crack. In the vicinity of the crack tip where
p « 1, the expressions for W and ~ are now obtained by a power series expansion in p.
In these series, terms which are of the order of p2 are neglected because they do not give
rise to singular stresses.

1. Circumferential crack, the limiting case of an elliptic hole whose major axis is per
pendicular to the shell axis. For this case W and ~ are given as:

3a2(l+v) M {
W = 3+ V Et3 A const. + A const. (p cos ex)

[
n{32 (5+2V+V

2)] (p3/2)[ ex 7+v 3ex] 2}
+ -4+T (3+v)(l-v) . J2 (1-v)cOS 2--3-cosT +O(p)
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FIG. 6. Coordinate system.

1+v Ma
2 2{

~ = - .j[12(l- V1.)) (3 + v) -t-
fJ

A canst. + A canst. (p cos IX)

l5.2)

2. Axial crack, the limiting case of an elliptic hole whose major axis parallel to the shell
axis.t For this case W and ~ are given in the following forms

3a2(I+v) M [
W = 3+ V Et3 A canst. + A canst. (p cos IX)

c:f)=

{
ttfJ2 (l+2V+SV2)} (p312)[ Q! 7+~' 3IXJ 2}

+ -4+2 , (3+ v)(1- v) . .j2 (1- v) cas 2--3-cos T +O(p)

(l+v) Ma
2 z{

J[12(l- v2)] (3 + v) -t-{3 A canst. + A const. (p cos IX)

[
(5+ 37\1) ( )](p3/2) ( IX 3IX) }+ 3 +2(1+5v)y+ln(/3/2J2) J2' 3cos"2+cosT +O(p2) .

(5.3)

(5.4)

In equations (5.1H5.4), the expressions of constants are not given since they do not
contribute to stresses. Membrane forces and bending moments can now be written in

t The expressions of ~ and Ware derived from those for the case of an elliptic nole whose major axis is
parallel to the shell axis (21).
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terms of ¢t and W in orthogonal curvilinear coordinates p, C( [23J.

M =(l-V)D~,~aW)
pl1. a2 ilp\p OrJ. .
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(5.5)

Then the membrane and bending components of stress resultants can be determined from
equations (5.1H5.5). Since for crack problems it is usual to express the stresses in x, y co
ordinate system, we have the following membrane and bending stresses for the circum
ferential (case 1) and axial (case 2) cracks.

Membrane stresses:

case (1)

case (2)

Bending stresses (extreme fibers):

case (1)

case (2)

~m) = p;:.(1\ml
(J(m) := p( 1 )0"(",)

)' m:2

t;~) = P:'; )(1\m1

u~m) := pt,:)O'~m}

0'(",) := P(2)clPII )
y m 1

T~} := p<,:Jc;\ttti.

(J~) = P~l)(J~)

(1(11) - p(llu(b)
y - It 2

...(h) _ p(O".(DI
"xy - 11 VII

(j~) = P~2)0'~)

O'~b) = P1.2)0'~)

r~~ = P~2)0'~1

(5.6)

(5.7)

(5.8)

(5.9)
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l1(m) = _l_[~cos:_~cos SIX] +O(pO)
1 .j(2p) 4 2 4 2

l1~m) = .j(~P)[~cos~+~cOsS21X]+0(pO)

( I 1 [ 1 . IX 1 . SIX] 0( 0)11 "; =-- - - sm - +- ~m - + P
1 .j(2p) 4 2 4 2

(b) ( 1 )[(l1+SV) r:x. (I-v) SIX] °
111 = ± - .j(2p) 4 cos 2+-4-cos2' +O(p)

(b) (1 )[(3-3V) r:x. (I-v) 5r:x.] °
112 = ± .j(2p) -4-cos2+-4-cos2' +O(p)

11~! = ± (__1_) [_(7 + v) sin:- (1- v) sin 5r:x.] +O(pO)
.j(2p) 4 2 4 2

pi';) = - ~[~2~:(~~2:i(~)(~2)[(l+V)+2(1+V)(Y+ In[fJ/2.j2])]+o(fJ4) (S.12)

pi';) = ~[12(1- v
2

)] . (~) (P2) [(5 + 37v) + 2(1 + 5v)(y + 1n[p/2,J2])] +0(p4)
(3 +v)(l- v) t 4 3 (5.13)

pj1)=[l (S+2V+V
2
)1t

fJ2
][ 6M ]+O(fJ4) (5.14)

b (3+v)(1-v) 8 t2(3+v)

pj2)=[1_(1+2V+5V2)1tP2][ 6M ]+O(R4. (S.lS)
b (3 +v)(l- v) 8 t 2(3 + v) fI )

The positive and negative signs at the beginning of equation (S.l1) refer to inner and
outer surfaces of the shell, respectively. Equations (S.6H5.1S) are identical with those
obtained by Foliast [24, 2S]. The method of analysis used by Folias involves the solution
of a set of coupled singular integral equations of Cauchy type and is therefore, different
from the one used here.

There are certain interesting features about the stresses near the crack tip:
1. Both membrane and bending stresses at the crack tip exhibit the same kind of

inverse square root singularity as found in plates.
2. Angular distributions of bending and membrane stresses near the crack tip are

dependent on Poisson's ratio as in the case of plates. It will be recalled that the angular
membrane stress distribution near the crack tip of a circumferential crack in a circular
cylindrical shell subjected to axial tension does not depend on Poisson's ratio [26].

3. The expressions for bending stresses of case 2 can also be obtained from those for
case 1 by merely replacing the quantity (5 + 2v + v2) appearing in the second term of
equation (5.14) by (I +2v+ 5v2) and by interchanging 11~) and 11~) in equation (5.8).

t Taking a typographical error in Ref. [24] into account.
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6. CONCLUDING REMARKS
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In this paper stresses around an elliptic hole in a circular cylindrical shell are analyzed
by a power series expansion technique. The major axis of the elliptic hole is taken to be
perpendicular to shell axis. The shell is loaded by a uniformly distributed bending moment
around the elliptic cutout. The method of solution involves perturbation in a curvature
parameter p. The results obtained are valid if the hole is small in size compared to the radius
of the cylindrical shell (approximately p < 0·3). The solutions given in this paper are not
restricted to nearly circular elliptic holes [27].

The solutions derived here in the limiting cases reduce to the well known solutions.
As P-+ 0, the solutions (4.1) and (4.2) reduce to the ones for an elliptic hole in a flat plate
with the same bending moment loading. With;' = 0 equations (4.1) and (4.2) become the
corresponding expression for the case of a circular hole in the same circular cylindrical
shell. Finally, the expressions for membrane and bending stresses for circumferential
and axial cracks are also presented.
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APPENDIX 1

If

where

then,
'fJ

MeW(~,q) = L (-1)KA~2iJ~Vl)H~I(V2)
K=O.I.2 ....

oc

NeW+ 1(~' q) = L (-l)KBlli~ p[JK(Vl)Hk1t l(VZ)-JK+ l(Vl)H~)(Vz)]
K=O.l.Z ....

(A. 1)
00

cezi1/, q) = L A~2J:) cos 2K"
K=O.l.Z, ...

OC!

sez j + 1(1/, q) = L g..li.~ Psin(2K + 1)".
K=O.l.Z ....

Here JK and H~) represent Bessel and Hankel functions of the first kind, respectively.
Standard expansions for the characteristic coefficients AW.l, iNi.~~) in powers of q are
available in Ref. [22]. It should be noted that the formulas for Mathieu and modified
Mathieu functions given in this Appendix are the same as those given by MacLachlan [22]
except that they are not normalized. Normalization is not necessary because these functions
are multiplied by arbitrary constants to be determined from boundary conditions.

APPENDIX 2

If p « 1, the following expansions are valid:
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(A.2)

e2~ = 1+2J(2p) cos ~+4PCOS2 ~ + J2Pt cos ~( 1+4 COS2~) +O(p2)

• tx 1 3tx
~ = J(2p) cos 2-6J2Pt cos 2+O(p2).

Expansions for other functions of ~ and" which are required can easily be derived from
equation (A.2).
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A6cTpaKT-Llai!TclI TCOpeTH'ICCKHA aHaJlH3 Mil HanplllKCHHA B 6e3MOMCHTHOM COCTOIlHHH H HanplllKCHHA

OT H3rH6a, BOKpyr 3J1J1HnTH'ICCKOrO OTBCpcTHlI, B 6ecKOHC'IHO MHHHOA, TOHKOA, KpyrnoA UtlllHHZlPH'ICCKOA

o6ono'lKc. bonbwall OCb 3nnHnTH'ICCKOrO OTBepcTHII ncpneHZlHKynllpHa K OCH o6ono'iKH. CHSonO'IKa

HarpylKcHa paBHOMcpHO pacnpeZleneHHblM MOMeHTOM H3rH6a, BOKpyr 3nnHnpTH'ICCKOrO KOHTypa. MCTOZl

peWCHHII 38KJlIO'IaeT B03MYWCHHe B napaMCTpe KpHBH3HbI. nonY'lcHHble peweHHII IIBnIlIOTCII Jlll)I(HblMH

Mil cny'lall MaJlOrO OTBeTCTHII, no cpaBHcHHIO C pa.l1HycoM UHnHHZlpHYCCKOA OIOOnO'IKH. LlalOTclI TaKlKe

BblpalKCHHII Mil HanplllKCHHA B BepWHHC OKpylKHOA H oceBoA wcnH.


